
DISCOVER . LEARN . EMPOWER

University Institute of Engineering
DEPARTMENT OF COMPUTER SCIENCE

& ENGINEERING
Bachelor of Engineering

Subject Name: System Programming
Subject Code: CST-315

Department of Computer Science

1
Compilers

Chapter-1.2
Assembler

• Variants of Assemblers

• Design of two pass assembler

Department of computer Science

2

Variants of Assemblers

• There is a list of assemblers ,computer programs that
translate assembly language source code into binary programs. Some
assemblers are components of a compiler system for a high level
language and may have limited or no usable functionality outside of
the compiler system.
• - Some assemblers are hosted on the target processor and operating

system, while other assemblers (cross-assemblers) may run under an
unrelated operating system or processor.

3

Variants of Assemblers

• As part of a compiler suite
• GNU Assembler (gas): GPL: many target instruction sets including ARM

architecture, Atmel AVR, x86, x86-64, Freescale 68HC11, Freescale v4e, Motorola
680x0, MIPS, PowerPC, IBM System z, TI MSP430.
• ASxxxx Cross Assembler (part of the Small Device C Compiler project): GPL:

several target instruction sets including Intel 8051, Freescale 68HC08, PIC
microcontroller.
• The Amsterdam Compiler Kit (ACK) targets many architectures of the 1980s,

including 6502, 6800, 680x0, ARM, x86 and Z8000.
• LLVM targets many platforms, however emits no per-target assembly language,

instead more high-level typed intermediate representation assembly-like
language used.
• Some others self-hosted native-targeted language implementations (like Go, Free

Pascal, SBCL) have their own assemblers with multiple targets. They may be used
for inline assembly inside language, or even included as a library, but not always
suitable for standalone application - no command-line tool exists, or only
intermediate representation used as a source, or support for targets very limited.

4

Single Target assembler
An assembler may have a single target processor or may have

options to support multiple processor types. Very simple
assemblers may lack features, such as macros, present in more
powerful versions.
• Various types are:
• 6502 assemblers
• 680x0 assemblers
• ARM assemblers
• Mainframe Assemblers
• POWER, PowerPC, and Power ISA assemblers
• x86 assemblers
• Z80 assemblers
• Other single target assemblers 5

Design of two pass Assembler

One-pass assembler cannot resolve forward references of data
symbols. It requires all data symbols to be defined prior to being
used. A two-pass assembler solves this dilemma by devoting one pass
to exclusively resolve all (data/label) forward references and then
generate object code with no hassles in the next pass. If a data
symbol depends on another and this another depends on yet
another, the assembler resolved this recursively.
• Two Pass Assembler
• Read from input line
• LABEL, OPCODE, OPERAND

6

Design of 2 pass Assembler

7

Design of 2 – Pass Assembler

PASS 1:
• Separate the Symbol, Mnemonic opcode, and operand fields
• Build the symbol table
• Perform LC Processing
• Construct Intermediate Representation
• PASS 2:
• SYNTHESIZE THE TARGET PROGRAM
• Advanced Assembler Directives
• ORIGIN
• EQU

8

Design of 2 – Pass Assembler

• EQUSyntax:
<Symbol> EQU <Address
Specification>E.g. MAXLEN EQU 4096 Pass I of Assembler
• Pass I Use following Data Structures
• OPTAB
• SYMTAB
• LITTAB
• POOLTAB

9

Design of 2 – Pass Assembler

• 2-pass system is to address the problem of forwarding references —
references to variables or subroutines that have not yet been
encountered when parsing the source code. A strict 1-pass scanner
cannot assemble source code which contains forward references.
Pass 1 of the assembler scans the source, determining the size and
address of all data and instructions; then pass 2 scans the source
again, outputting the binary object code.

10

Design of 2 – Pass Assembler

11

Working of Pass-2

• Pass-2 of assembler generates machine code by converting symbolic
machine-opcodes into their respective bit configuration(machine
understandable form). It stores all machine-opcodes in MOT table (op-code
table) with symbolic code, their length and their bit configuration. It will
also process pseudo-ops and will store them in POT table(pseudo-op table).
• Various Data bases required by pass-2:
1. MOT table(machine opcode table)
2. POT table(pseudo opcode table)
3. Base table(storing value of base register)
4. LC (location counter) Take a look at flowchart to understand:

12

• [PDF] Systems Programming and Operating Systems by Dhamdhere -
Free Download PDF (dlscrib.com)
• [PDF] Principles of Compiler Design By Alfred V. Aho & J.D.Ullman

Free Download – Learnengineering.in

References
Department of computer Science

13

https://dlscrib.com/download/systems-programming-and-operating-systems-by-dhamdhere_59b64cb7dc0d60182f8ceb1f_pdf
https://learnengineering.in/pdf-principles-of-compiler-design-by-alfred-v-aho-j-d-ullman-free-download/

THANK YOU

14

